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1 Introduction

Structural estimation aims to recover the deep (or structural) parameters of an eco-
nomic model directly from data using theoretical restrictions. In these notes, we
focus on the framework developed by Blundell, Pistaferri, and Preston (BPP, 2008)
for measuring how income shocks affect consumption and the extent to which house-
holds can partially insure against these shocks. We begin with a presentation of the
full model, describe the estimation methods (GMM and direct moment calculation),
compare the two approaches, and finally discuss extensions to more complicated set-
tings which may require methods like the Simulated Method of Moments (SMM).

2 The Model

2.1 Household Optimization Problem

Consider a household i that maximizes expected lifetime utility over consumption:

max
{Cit, Ait+1}Tt=0

E0

[
T∑
t=0

βtU(Cit)

]
, (1)

subject to the intertemporal budget constraint:

Ait+1 = (1 + r)(Ait + Yit − Cit), Ai,T+1 = 0, (2)

where

• Cit denotes consumption in period t,
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• Yit denotes disposable income,

• Ait denotes assets,

• β is the discount factor, and

• r is the exogenous interest rate.

2.2 Income Process

The BPP model decomposes log real income into a predictable component and an
unpredictable component:

log Yit = Z ′
itωt + Pit + vit, (3)

where:

• Z ′
itωt captures predictable influences (demographics, education, time trends);

• Pit is the permanent (persistent) income component, and

• vit is the transitory (temporary) component.

The dynamics of the permanent component are modeled as a random walk:

Pit = Pit−1 + zit, (4)

with zit having variance σ2
z . The transitory component is often modeled using an

MA(1) process:
vit = eit + θei,t−1, (5)

with eit having variance σ2
e .

2.3 Consumption Process and Partial Insurance

After removing the predictable part (e.g., by regressing logCit on Zit), the unexplained
change in log consumption is represented as:

∆cit = ϕ zit + ψ eit + ξit, (6)

where:

• ϕ is the transmission (pass-through) parameter for permanent income shocks,

• ψ is the transmission parameter for transitory shocks,

• ξit captures taste heterogeneity, that is, idiosyncratic (unobserved) variation in
consumption behavior.

The degree of partial insurance is reflected in the values of ϕ and ψ: for example,
ϕ = 0 implies full insurance against permanent shocks, while ϕ = 1 indicates no
insurance.
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2.4 Taste Heterogeneity

The unexplained variation in consumption growth not attributable to income shocks
is captured by ξit. Specifically, the variance of ∆cit can be decomposed as:

Var(∆cit) = ϕ2 σ2
z + ψ2 σ2

e +Var(ξit). (7)

Thus, the variance of taste heterogeneity is given by:

σ2
ξ = Var(∆cit)− ϕ2 σ2

z − ψ2 σ2
e ,

3 GMM Estimation of the Structural Model

3.1 The General Idea of GMM

The Generalized Method of Moments (GMM) relies on matching model-implied (the-
oretical) moment conditions with their sample counterparts. Suppose that for each
observation i the model implies:

E[mi(θ)] = 0,

where θ = (ϕ, ψ) and mi(θ) is a vector of moment functions. The sample moments
are:

gN(θ) =
1

N

N∑
i=1

mi(θ).

Then, the GMM estimator chooses θ̂ to minimize the quadratic form:

J(θ) = gN(θ)
⊤W gN(θ),

where W is a weighting matrix.

3.2 Moment Conditions in the BPP Framework

In the BPP model we can derive the following moment conditions:

1. Using an instrument for the permanent income shock:

Sit = ∆yi,t−1 +∆yit +∆yi,t+1,

the model implies:

E
[
∆cit Sit

]
= ϕσ2

z .

2. Similarly, for the transitory component:

E
[
∆cit ∆yi,t+1

]
= ψ σ2

e .

The corresponding sample moment vector is:

gN(θ) =
1

N

N∑
i=1

(
∆citSit − ϕ∆yitSit

∆cit∆yi,t+1 − ψ∆yit∆yi,t+1

)
.
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3.3 Two-Step GMM Estimation

Step 1: Identity Weighting Matrix

A simple first step is to set:
W = I,

so that
J(θ) = gN(θ)

⊤ I gN(θ) = ∥gN(θ)∥2.

Minimizing J(θ) yields an initial estimator θ̂1.

Step 2: Optimal Weighting

After obtaining θ̂1, we estimate the asymptotic covariance matrix of the sample mo-
ments,

Ω = Var
(√

N gN(θ0)
)
.

The optimal weighting matrix is given by:

Wopt = Ω−1.

By plugging Wopt into the GMM objective function,

J(θ) = gN(θ)
⊤Ω−1 gN(θ),

we obtain an estimator that is asymptotically efficient. The intuition is that moments
which are more variable (i.e., less reliable) are given less weight through the inverse
covariance matrix.

4 Direct Moment Calculation Approach

For simple models like the BPP specification, the closed-form moment conditions
allow us to derive:

ϕ =
E [∆cit Sit]

E [∆yit Sit]
,

where in practice we replace the expectations with sample covariances. This direct
calculation is straightforward and yields the same estimate as GMM when one uses
the identity weighting matrix and exactly as many moments as parameters.

5 Comparison of Approaches

5.1 Direct Calculation

• Advantages:

– Computationally simple and transparent.
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– No numerical optimization is required.

• Disadvantages:

– Limited to cases where the theoretical (closed-form) moments are available.

– Cannot readily exploit overidentification (when more moments than pa-
rameters are available).

5.2 GMM

• Advantages:

– Can accommodate more moment conditions than parameters (overidenti-
fication), enabling tests of the model.

– The two-step procedure with optimal weighting (using the inverse covari-
ance matrix) yields estimators that are asymptotically efficient.

– Flexible and extendable to nonlinear models.

• Disadvantages:

– Requires numerical optimization.

– When the model is simple, it may yield similar results to the direct calcu-
lation.

6 Extensions: Why We Need GMM and SMM

6.1 Beyond Closed-Form Moments

When the model becomes more complex (e.g., introducing nonlinear transmission of
income shocks as in a quadratic consumption function or incorporating higher mo-
ments such as skewness and kurtosis), analytical derivation of the moment conditions
might become intractable. In this case:

• GMM provides the flexibility to incorporate many moment conditions, even if
they are nonlinear functions of θ.

• If moments cannot be obtained in closed form, the Simulated Method of
Moments (SMM) is used: the model is simulated for each candidate θ to
generate simulated moments m(θ); these are then matched to the empirical
moments m̂ by minimizing:

Q(θ) = [m̂−m(θ)]⊤ W [m̂−m(θ)] .
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6.2 Why Optimal Weighting is Most Efficient

In GMM, if we choose the weighting matrix as the inverse of the covariance of the
moment conditions, then:

• No moment is “over-emphasized” simply because it has a larger scale.

• The asymptotic variance of the GMM estimator becomes:[
D⊤Ω−1D

]−1
,

where D is the Jacobian of the moment functions.

• It can be shown that this choice minimizes the asymptotic variance among all
possible weighting matrices.
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